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We study a percolation problem based on critical loop configurations of the O�n� loop model on the
honeycomb lattice. We define dual clusters as groups of sites on the dual triangular lattice that are not separated
by a loop, and investigate the bond-percolation properties of these dual clusters. The universal properties at the
percolation threshold are argued to match those of Kasteleyn-Fortuin random clusters in the critical Potts
model. This relation is checked numerically by means of cluster simulations of several O�n� models in the
range 1�n�2. The simulation results include the percolation threshold for several values of n, as well as the
universal exponents associated with bond dilution and the size distribution of the diluted clusters at the
percolation threshold. Our numerical results for the exponents are in agreement with existing Coulomb-gas
results for the random-cluster model, which confirms the relation between both models. We discuss the renor-
malization flow of the bond-dilution parameter p as a function of n, and provide an expression that accurately
describes a line of unstable fixed points as a function of n, corresponding with the percolation threshold.
Furthermore, the renormalization scenario indicates the existence, in a p versus n diagram, of another line of
fixed points at p=1, which is stable with respect to p.
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I. INTRODUCTION

The reduced Hamiltonian of the O�n� spin model is usu-
ally written as

H/�kBT� = − J/�kBT��
�ij�

S� i · S� j , �1�

where kB is the Boltzmann constant, and T the temperature.
The spin S� i is an n dimensional vector, localized at site i of a
lattice. The sum is over all nearest-neighbor pairs. For the
special cases n=1,2 ,3, this model corresponds to the Ising,
the XY and the Heisenberg model, respectively.

The O�n� symmetry actually allows a more general form
of the pair interaction—e.g., one may replace J / �kBT�S� i ·S� j

by a�S� i ·S� j� with a an analytic function. A particularly useful
choice �1� is a� ln�1+xS� i ·S� j�, where x is a temperaturelike
variable. The so-called high-temperature graph expansion �2�
for such a model yields a weighted sum of graphs, in which
each site connects to its neighboring sites by an even number
of “bonds.” On lattices with coordination number of at most
three, like the honeycomb lattice, these graphs reduce to a set
of nonintersecting loops. For properly normalized O�n�
spins, the resulting partition sum reads �1�

Zloop = �
G

xNbnNl, �2�

where the sum is over all possible loop configurations G that
can be constructed on the edges of the lattice. The number of
bonds, i.e., edges covered by G, is denoted as Nb, and the

number of loops in G as Nl. Remarkably, the spin dimension-
ality n of the original model now appears as a continuous
variable. The critical point of this model is exactly known for
−2�n�2, as well as some critical exponents �3�.

The significance of clusters in critical or near-critical con-
figurations of O�n� and q-state Potts models has already been
recognized long ago �4–6�. While the present work focuses
on the percolation aspects of the two-dimensional O�n�
model, we consider it useful to first review the similar case
of the two-dimensional Potts model.

It is well known that the critical singularities of the ferro-
magnetic q-state Potts model can be correctly represented in
terms of Kasteleyn-Fortuin �KF� clusters �5,6�, also called
random clusters, rather than in terms of naively defined Potts
clusters. The latter are formed by connecting, with probabil-
ity 1, nearest-neighbor spins in the same Potts state, while
the formation of KF clusters uses a probability p=1−e−K

instead, where K is the nearest-neighbor coupling constant of
the Potts model. Thus, one may consider KF clusters as per-
colation clusters formed by a bond-percolation process that
uses the Potts clusters as a substrate.

Both the size of the largest Potts and that of the largest KF
cluster diverge at the critical point, but it is the size of the KF
cluster that determines the spontaneous magnetization, gov-
erned by the order-parameter exponent ��q�. The Potts mag-
netic correlation function appears to be equal to the probabil-
ity that the correlated sites belong to the same KF cluster. It
follows that the fractal dimension df of KF clusters is equal
to the Potts magnetic renormalization exponent yh �7�. Potts
clusters are denser than KF clusters, and are described by a
larger fractal dimension �8,9�. At the Potts critical coupling
Kc, bond dilution of Potts clusters yields a percolation
threshold at bond probability p=1−e−Kc �7,9,10�, which cor-
responds precisely with KF clusters. In the renormalization
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language, this KF point acts as an unstable fixed point on the
Potts critical line parametrized by p, and the Potts clusters
are described by a stable fixed point at larger p.

For the case of the tricritical q-state Potts model, which
can be reached from the pure q-state Potts model by includ-
ing vacant sites �11,12�, the situation is somewhat different.
The thermodynamic singularities are still described by KF
clusters, which are obtained by bond dilution of tricritical
Potts clusters with bond probability p=1−e−Kt, where Kt is
the Potts coupling at the tricritical point. But the percolation
threshold of the bond-dilution process no longer coincides
with the KF point. The percolation threshold now occurs at
p�1−e−Kt, and marks an unstable fixed point with respect to
variation of p. The fractal properties of tricritical Potts clus-
ters, as well as those of KF clusters, are now described by a
fixed point that is stable in the p direction.

Furthermore, the pair of fixed points on the tricritical line
can be related to the pair on the critical line. When we define
q� as the number of states for which the tricritical Potts
model has the same conformal anomaly as the q-state critical
Potts model, it is found that the universal properties of
q-state Potts clusters match those of q�-state tricritical KF
clusters, and that q-state KF clusters correspond with diluted
tricritical q�-state clusters at the percolation threshold �9,13�.

It is now natural to address a similar percolation problem
defined within the domains separated by critical O�n� loops.
In particular, one may ask the questions for what bond prob-
ability p there will be a percolation threshold, what is the
exponent associated to p, and what is the fractal dimension
of the percolation clusters at the threshold. While it is pos-
sible to find direct answers for the honeycomb O�1� model,
this work will address these questions also for other values
of n. In Sec. II we predict the exponent yh, which is the
fractal dimension of the clusters at the percolation threshold,
and yp, or, �p=1 /yp, which controls the divergence of the
percolation correlation length as �= �p− pc�−1/yp. Section III
provides a numerical analysis that yields the percolation
thresholds and a verification of the Coulomb-gas result. The
analysis is based on finite-size scaling �14� and Monte Carlo
simulations of O�n� models for several values of n, using a
recently developed cluster algorithm �15�. In Sec. IV we re-
view the self-matching lattice argument for the case of the
dual triangular lattice, and its consequences for our percola-
tion problem. We conclude with a short discussion in Sec. V.

II. BOND PERCOLATION BETWEEN DUAL SPINS

In defining the percolation problem of O�n� loop configu-
rations, it is convenient to make use of the representation of
such configurations by means of Ising spins on the dual lat-
tice. Spins not separated by a loop are given the same sign,
and spins separated by one loop have opposite signs. Here
we ignore the possible inconsistency of such an assignment
with the existence of periodic boundary conditions, because
we expect that leading critical singularities are not modified
by the restriction that the spins are single valued. The dual
Ising configuration thus completely specifies the loop con-
figuration �but we do not attempt to express the O�n� parti-
tion sum in the Ising language�. We can now construct dual

clusters by drawing, with probability 1, bonds between
nearest-neighbor sites occupied by spins in the same state.
The hulls of these clusters are the O�n� loops. At criticality
of the O�n� loop model, the clusters are fractals with dimen-
sion da, and the hulls are fractals with dimension dl.

On the basis of a critical loop configuration, one may now
connect neighboring dual Ising spins in the same state in-
stead with a bond probability p�1 and thus form new types
of clusters. This is illustrated in Fig. 1.

The results for the percolation problem on Potts clusters
described in Sec. I are relevant for the analysis of the geo-
metric aspects of critical O�n� loop configurations, because
of the well-known relation between critical O�n� loops and
the hulls of tricritical random-cluster configurations �3,16�.
As a result, the magnetic exponent of the tricritical Potts
model is equal to the fractal dimension of the regions sepa-
rated by loops in the corresponding O�n� model on the sur-
rounding lattice. Although it is not obvious how to interpret
the O�n� loops on the honeycomb lattice as the hulls of a KF
random-cluster model, one may assume that the universal
aspects of the percolation problems within the regions sepa-
rated by the loops are independent of the details of the lattice
structure. Moreover, the partition sum of the critical O�n�
loop model on the honeycomb lattice was shown to be iden-
tical to that of a tricritical Potts model with vacancies �12� on
the triangular lattice. This mapping identifies the O�n� loops
with the hulls of tricritical Potts clusters. As mentioned
above, the universal properties of the tricritical Potts clusters
also apply to tricritical KF clusters. One can thus associate
the fractal dimension dl of critical O�n� loops with the hull
fractal dimension of tricritical KF clusters, and the fractal
dimension da of the regions separated by loops with the frac-
tal dimension of tricritical KF clusters.

These exponents are exactly known by means of the
Coulomb-gas method �17–19�, and verified numerically �20�
for the O�n� model. The critical O�n� loop model and the
equivalent q=n2-state tricritical Potts model share the
Coulomb-gas coupling g, which is given by the following
equation

q = 4 cos2�g��, 1 � g � 2. �3�

Let g��1 /g, thus 0.5�g��1, be the Coulomb-gas coupling
of the q�-state critical Potts model, where q� is determined
by

FIG. 1. �Color online� An O�n� loop configuration on the hon-
eycomb lattice, together with a bond-percolation configuration in
dual clusters as defined within O�n� loops.
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q� = 4 cos2�g��� . �4�

This q�-state critical Potts model has the same conformal
anomaly as the critical O�n� loop model, as well as the
n2-state tricritical Potts model �21,22�,

c = 1 −
6�1 − g�2

g
= 1 −

6�1 − g��2

g�
. �5�

As already mentioned in Sec. I, the Potts clusters of this
q�-state critical Potts model are equivalent with the q-state
KF clusters of the tricritical Potts model, and therefore also
with the regions separated by critical O�n� loops. Just as the
process of bond dilution of critical q�-state Potts clusters
leads to KF random clusters, we expect that bond dilution of
the dual clusters defined within O�n� loops will, at the bond-
percolation threshold, lead to configurations with critical KF-
like universal properties. The fractal dimension of the KF
clusters of the critical q�-state Potts model is �19�

yh = 1 + g�/2 + 3/�8g�� , �6�

which can be continued analytically into the tricritical range
�23�. This holds as well for the bond-dilution exponent,
which is given by �24�

yp = 1 − 3g�/2 + 1/�2g�� . �7�

For the special values n=0, 1, and 2 it is possible to
derive exact percolation thresholds. For n=0, loops are in
fact forbidden due to their zero weights, but, depending on
the boundary conditions, loop segments may emerge from
the boundaries. In the high-temperature O�0� phase, these
segments will, however, be confined to a boundary layer of
finite thickness, and the bulk of the model will be empty.
Therefore, the percolation threshold is exactly that of the
triangular bond-percolation model, which is given as the so-
lution of

p3 − 3p + 1 = 0. �8�

Assuming continuity of the percolation threshold between
the high-temperature O�n� phase and the critical state, the
bond-percolation threshold pc�n=0� at O�0� criticality is also
equal to the solution of Eq. �8�, which is

pc�n = 0� = 2 sin��/18� . �9�

For the O�1� loop model, one may apply an exact duality
transformation which yields the critical triangular Ising
model. Thus, the dual Ising configurations described above
are precisely those of the critical triangular Ising model and
we can use its known properties. The critical point of the
triangular model �25� is Kc= �1 /4�ln 3, and its random-
cluster representation determines the percolation threshold as

pc�n = 1� = 1 − exp�− 2Kc� = 1 − 1/	3. �10�

For the case n=2 we apply an argument of a different
nature. First we note that, along the Potts critical line as
parametrized by p, the two fixed points, describing the Potts
and KF clusters respectively, merge �9� for q→4, the point
where the Potts critical and tricritical branches meet. At this
point, the difference between the critical and tricritical KF

clusters vanishes. Therefore we expect that no further bond
dilution of the aforementioned dual clusters is required, i.e.,

pc�n = 2� = 1. �11�

The predictions for the percolation thresholds at n=1 and 2
will be the subject of numerical verification in Sec. IV C.

III. SIMULATION

A. Sampled variables and finite-size scaling

The representation of the Potts model by means of KF
clusters has led to the development of cluster Monte Carlo
algorithms �26,27�, which drastically reduce the critical
slowing down problem in simulations of the Potts model.
Since then, more cluster algorithms have been developed, so
that accurate simulation results can now be obtained for a
considerable number of other critical model systems. Here
we use an efficient cluster algorithm �15� for O�n� loop mod-
els with noninteger n	1 to verify the predictions made in
Sec. II. The simulations took place at the critical point which
is given by xc= �2+ �2−n�1/2�−1/2 for the honeycomb lattice
�3�. The loop model cluster algorithm �15� easily allows
meaningful simulations up to a linear system size L=512 at
the critical point.

The configurations generated by the Monte Carlo algo-
rithm are represented by means of dual Ising spins. The per-
colation problem involves the addition of bonds between
equal nearest-neighbor Ising spins with probability p. For
this percolation problem on the dual clusters, we expect, at
least in part, a similar behavior as a function of p as usual in
percolation theory �28�. Thus, for small p the percolation
clusters are small, and they will grow with increasing p until
the percolation threshold pc where the largest percolation
cluster diverges, at least in the thermodynamic limit. In a
finite system, the largest cluster is limited by the system size.
When a percolation cluster reaches the system size, we call it
a “spanning cluster.” However, this statement has to be made
more precise. For a finite system with periodic boundary
conditions, there are different rules to define a spanning clus-
ter. One may define it as a cluster whose linear size in at least
one of the lattice directions reaches the size of the periodic
box, or as a cluster that connects to itself along at least one
of the periodic directions �29�. Here we use the latter defini-
tion.

In order to obtain the threshold pc and some critical ex-
ponents associated with this percolation problem, several
quantities are sampled. These include the susceptibilitylike
quantity 
G, the probability Re that the occupied bonds form
a nontrivial loop �“nontrivial” means here that the loop spans
the torus and thus cannot be shrunk into a point by a con-
tinuous deformation�, and the density P� of the spanning
cluster. The quantity Re is alternatively called the wrapping
or the crossing probability. We provide some further details
to describe these quantities.

On the triangular lattice, a cluster may span the system in
different directions, including the ones labeled x, y, and z in
Fig. 2. We thus define the measure Re of the spanning prob-
ability as
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Re = ��Rx + Ry + Rz�/3� , �12�

where �¯ � stands for ensemble averaging, and the subscript
e means that a connection can exist along each of the x, y,
and the z directions. If there is no cluster that spans the
system, we put Rx=Ry =Rz=0. We put Rx=1 if there exists of
a cluster that connects to itself over a displacement equal to
a unit vector along the x direction; if there are no other
connections to itself in other directions, we put Ry =Rz=0.
The same applies with cyclic permutations of x, y, and z.
However, a cluster may also connect to a periodic image of
itself in other directions than those of the x, y, and z axes. If
the cluster connects to itself with a nonzero displacement
vector that is not parallel to the x, y, or z direction, we put
Rx=Ry =Rz=1. With this definition of Re, the x, y, and z
directions are treated equivalently, despite the fact that there
are only two independent directions in two dimensions.

Finite-size scaling yields the following finite-size behav-
ior for Re as a function of the finite size L and the bond
probability,

Re = Rec + a�p − pc�Lyp + ¯ + b1Ly1 + b2Ly2 + ¯ ,

�13�

where pc is the percolation threshold, yp is the bond-dilution
exponent, and y1, y2 ,¯ are negative correction-to-scaling
exponents. The quantity Rec is defined as the value of Re at
pc, which is also universal �30,31�, but still dependent on the
finite system geometry and, at present, on the underlying
O�n� critical state.

The percolation susceptibility 
G and the percolating clus-
ter density P� are defined as


G = L−d
�
i

Nc

ni
2� , �14�

P� = L−d�n�� , �15�

respectively, where d=2 represents the dimensionality of the
model, and Nc is the number of clusters. The number of sites
in the ith cluster is denoted ni, and n� refers to that in the
spanning cluster. Thus P� represents the probability that a
randomly chosen site belongs to the spanning cluster. The
definition of 
G is the same as the Potts magnetic suscepti-
bility, expressed in terms of an ensemble average over ran-
dom clusters.

Finite-size scaling predicts the following behavior for P�

and 
G,

P� = Lyh−d�a0 + a1�p − pc�Lyp + ¯ + b1Ly1 + b2Ly2 + ¯� ,

�16�


G = L2yh−d�a0 + a1�p − pc�Lyp + ¯ + b1Ly1 + b2Ly2 + ¯� ,

�17�

where yh is the fractal dimension of the percolating cluster.
At the percolation threshold pc, these equations reduce to

P� = Lyh−d�a0 + b1Ly1 + b2Ly2 + ¯� , �18�

and


G = L2yh−d�a0 + b1Ly1 + b2Ly2 + ¯� . �19�

B. Results

We illustrate the numerical procedure, using the O�1.5�
loop model as an example. The model with periodic bound-
ary conditions was simulated at its critical point �3�, which is
xc=0.607 78. . .. Since the cluster algorithm hardly suffers
from any critical slowing down, as described in Ref. �15�,
samples were taken at intervals of only two cluster steps.

The first stage involved the determination of the spanning
probability Re�p ,L�, the density P� of the percolating cluster,
and the percolation susceptibility 
G for several values of the
bond probability p. This was done for six system sizes L
ranging from 8 to 256. After the equilibration of the system,
108 samples were taken for each value of p in the range 8
�L�64, and 4�107 samples in the range 64�L�256.
Statistical errors were estimated by dividing each run in 1000
partial results, and subsequent statistical analysis. The corre-
lations between subsequent partial results are negligible for
the lengths of these runs. Parts of the Re data are shown in
Fig. 3.

The number of free parameters in the finite-size scaling
Eqs. �13�, �16�, and �17� makes it necessary to apply a mul-
tivariate method. We used the Levenberg-Marquardt least-
squares algorithm, which allows nonlinear fits according to

y

x

z

FIG. 2. A percolation cluster may span the periodic system with
hexagonal symmetry in the x, y, and z directions.
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FIG. 3. �Color online� Spanning probability Re versus bond
probability p for various system sizes in the case n=1.5. The lines
connecting the data points are added only for illustration. All error
bars are much smaller than the size of the data points.

DING et al. PHYSICAL REVIEW E 79, 061118 �2009�

061118-4



these equations. We thus determined the percolation thresh-
old pc from the Re versus p data. The next step involved a
simulation of seven system sizes in the range 8�L�512 at
our estimated value of pc, with the same lengths as men-
tioned above for 8�L�256, and 107 samples for L=512.
Including these runs, we fitted the unknowns in the finite-
size scaling formula Eq. �13�, also including the universal
probability Rec and the dilution exponent yp to the data. This
yielded our final estimates, namely pc=0.504 03�1�, Rec
=0.6420�2�, and yp=0.395�2� for the bond-dilution expo-
nent. The latter result is in a good agreement with the
Coulomb-gas prediction yp=0.3955¯.

Since the analysis of the data for the density P� of the
percolating cluster and for the percolation susceptibility 
G
yielded the p dependence in terms of the coefficients ai, we
can deduce the value of P� and 
G at our best estimate for
the percolation threshold. Parts of these data for P� are
shown in Fig. 4 versus L. We find that, at the percolation
threshold, P� and 
G are well described by power laws as a
function of sufficiently large lattice sizes L, in agreement
with the finite-size scaling behavior expressed by Eqs. �18�
and �19�. A fit of the numerical data for P� and 
G according
to these equations yields the fractal dimension yh of the per-
colation clusters as yh=1.8678�2� and yh=1.8678�1�, respec-
tively. Both values are in good agreement with the value
1.867 75. . . based on the Coulomb-gas prediction, Eq. �6�.

The same procedure as described above was applied to
the cases n=1.0, 1.25, 	2, 1.5, 1.75, 1.90, and 1.95. The
percolation thresholds pc, the bond-dilution percolation ex-
ponent yp, and the fractal dimensions of the percolation clus-
ter yh are obtained similarly. The results are listed in Table I.
The exponents are in a satisfactory agreement with the val-
ues predicted by Eqs. �6� and �7�.

We also performed simulations for n=2. However, the Re
versus p data, which are shown in Fig. 5, do not show inter-
sections for different system sizes. Near p=1, the curves
appear to run asymptotically parallel at vanishing distances
for large L. These findings are consistent with the predicted
values pc=1 and yp=0. However, the vanishing of yp renders
Eq. �13� insufficient for a numerical determination of pc from
the Re data for n=2. We thus fitted the exponent yh using the
data for P� and 
G at the theoretical value pc=1. These re-
sults are included in Table I. Before attempting a numerical
analysis of the Re data, we will adapt Eq. �13� for the case of
a marginally relevant bond-dilution field, with the help of
renormalization considerations in Sec. IV.

0.3

0.35

0.4

0.45

0.5

8 16 32 64 128 256 512

P
∞

L

FIG. 4. �Color online� Density P� of the spanning cluster at the
percolation threshold versus system size L for the case n=1.5,
shown on logarithmic scales. The dashed line represents a fit to the
data points according to Eq. �18�. The error bars are much smaller
than the size of the data points.

TABLE I. Numerical results �N� for the percolation threshold pc, the bond-dilution exponent yp, and the
fractal dimension yh of the percolation problem on critical O�n� loop configurations. In the absence of
intersections as in Fig. 3, the entry for pc at n=2 was roughly estimated from Fig. 5. Theoretical predictions
�T� are included where available.

n pc yp Rec yh�from P�� yh �from 
G�

1.00 N 0.42265 �1� 0.54 �2� 0.566 �2� 1.8749 �2� 1.875 �1�
T 0.422649 0.5416 15/8 15/8

1.25 N 0.45587 �2� 0.475 �1� 0.6018 �2� 1.8709 �3� 1.8710 �1�
T 0.4753 1.87098 1.87098

	2 N 0.48508 �2� 0.425 �1� 0.6275 �2� 1.8687 �3� 1.8687 �1�
T 0.4250 1.86875 1.86875

1.50 N 0.50403 �1� 0.395 �2� 0.6420 �2� 1.8678 �2� 1.8678 �1�
T 0.3955 1.86775 1.86775

1.75 N 0.58745 �4� 0.290 �3� 0.6932 �2� 1.8658 �3� 1.8660 �1�
T 0.2882 1.86603 1.86603

1.90 N 0.6924 �2� 0.186 �5� 0.7402 �3� 1.8668 �4� 1.8670 �1�
T 0.1882 1.86700 1.86700

1.95 N 0.7621 �5� 0.13 �1� 0.7650 �5� 1.868 �1� 1.8684 �2�
T 0.1355 1.86845 1.86845

2.00 N 1.00 �2� −0.01 �2� 0.817 �1� 1.8750 �3� 1.87500 �1�
T 1 0 15/8 15/8
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IV. SELF-MATCHING ARGUMENT AND
RENORMALIZATION FLOW

A. Matching property

First we shall briefly review the matching properties
�32,33� of planar lattices and the consequences for the site-
percolation thresholds of some of these lattices. Let P
��V ,A� be a planar lattice, where V is the set of lattice sites
and A the set of edges connecting the nearest-neighbor sites
of V. The faces of this lattice are polygons without any “di-
agonals.” Let B be the set of diagonals connecting all pairs
of non-nearest-neighboring sites within each polygon. Then,
we define the lattice L, in which these diagonals are in-
cluded, as L��V ,A+B�. Then, P and L are called matching
lattices. It is possible to define matching lattices in a more
general way, but that is unnecessary for our present purposes.

Suppose that a given site-percolation configuration on P
percolates in the x� lattice direction. The existence of a per-
colating path prevents the existence of a percolating path in a
conjugate percolation configuration obtained as follows. Re-
place the occupied sites of V by empty sites, and vice versa.
Add the diagonals, leading to the lattice L, and consider the
percolation problem in the other lattice direction denoted y�.
It then follows that there is no percolating path in that direc-
tion. Furthermore, if a given configuration of site variables
on P does not lead to a percolating path in the x� direction,
then the conjugate problem must have a percolating path in
the y� direction. As a consequence, if the site-percolation
threshold of lattice P is pP

�s�, and the site-percolation thresh-
old of the lattice L is pL

�s�, then the thresholds are related as

pP
�s� + pL

�s� = 1. �20�

Since no diagonals can be added into the triangular lattice,
the triangular lattice is called a self-matching lattice, and the
difference between the two thresholds in Eq. �20� vanishes.
The matching argument thus yields that the percolation
threshold of the triangular lattice, as well as that of other
self-matching lattices, lies at pc

�s�=1 /2.

An important feature of the matching argument is its in-
dependence of interactions between the site variables, as
long as these interactions are symmetric under the inter-
change of occupied and unoccupied lattice sites.

B. Percolation at bond probability p=1

For the case n=1 and bond probability p=1, the model
reduces to the Ising model on the triangular lattice with cou-
pling K=−�ln x� /2, and all neighboring sites with equal
spins are connected by occupied bonds. The x�xc=1 /	3
region corresponds to the low-temperature ferromagnet, and
1xxc to the high-temperature ferromagnet, and x	1 to
the antiferromagnet. Thus, the symmetry between + and −
spins holds in the range xxc. If one considers + spins as
occupied sites, and − spins as unoccupied ones, the bond-
percolation model with p=1 can be regarded as a correlated
site-percolation model with site-occupation probability p�s�

=1 /2. In particular, the x=1, i.e., K=0 case reduces to the
standard site percolation on the triangular lattice �17�. The
aforementioned self-matching relation tells us that the whole
line for p=1 and xxc is a critical line of the percolation
type, as already noted in Ref. �34�. Figure 5 in the latter
reference describes the renormalization flow of the model in
the p versus K plane. Since the percolation critical line must
be a flow line, it follows that, at the Ising critical tempera-
ture, the point p=1 is a fixed point. Since the KF fixed point
is unstable, and there is no sign of intermediate fixed points
�34�, the p=1 fixed point is stable along the p direction.

For n�1, the O�n� loop model involves nonlocal interac-
tions, as reflected by the quantity Nl in Eq. �2�. Nevertheless,
the symmetry between the + and − spins in the dual triangu-
lar lattice still holds as long as xxc�n�. The matching argu-
ment yields that, for n�2, the point p=1,x=xc�n� is always
a fixed point for the flow along the p direction.

Consider the subspace �n , p� with x=xc�n� in the three-
parameter space �n , p ,x�. We have now derived two lines of
fixed points as a function of n, namely, p=1 from the self-
matching argument, and p= pc�n� from our numerical esti-
mates. The latter seems to be tangent to the line n=2, while
the former is perpendicular to the n=2 line. This tells some-
thing about the renormalization flow near n=2.

According to the aforementioned results, we conjecture
the associated renormalization flow as shown in Fig. 6. For
n=2, the bond-dilution field is marginally relevant for p
�1 and marginally irrelevant p	1. The lowest-order renor-
malization equation in �p�1− p and 	�n�	2−n leading to
the flow diagram sketched in Fig. 6 is

d�p

dl
= r0�p	�n + r1��p�2, �21�

where l parametrizes the renormalization flow such that the
rescaling factor is el, and r0 and r1 are unknown constants.
The appearance of 	�n in this equation is in line with the
dependence of the O�n� critical point xc and that of the
Coulomb-gas coupling constant g on n.
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FIG. 5. �Color online� Spanning probability Re versus bond
probability p for various system sizes in the case n=2. The lines
connecting the data points are added only for illustration.
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C. Numerical evidence for the conjectured fixed points
at p(n)=1

If the line of stable fixed points is indeed located at
p�n�=1,x=xc�n� for 0�n�2, the amplitude of the irrel-
evant bond-dilution field is zero at and only at p=1. For a
test, we simulated the critical n=1.5 loop model near p=1.
The bond-dilution exponent is given by Eq. �7�, where the
Coulomb-gas couplings for the stable and unstable fixed
points relate as gg�=1. For n=1.5 this yields the bond-
dilution exponent as yp�=−0.4386 near p=1 and yp=0.3955
near the threshold pc.

Parts of the Re data near p=1 are shown in Fig. 7 versus
the bond-occupation probability p. The Re data lines become
more and more flat when size L increases, reflecting that the

bond-dilution field is irrelevant. The filled circles mark the
intersections of the L and the 2L data lines with L=4, 8, 16,
32, and 64. They are approaching p=1 when L increases,
suggesting that p=1 is indeed a stable fixed point. To obtain
more solid evidence, we fitted the Re data at p=1 by Re�L�
=Re1+bLyc, and obtained Re1=0.964 780�8� and yc=
−1.9�2�, which indicates the absence of finite-size correc-
tions with exponent yp�=−0.4386.

The data are also shown in Fig. 8 as �Re�L , p�−Re1� versus
L, where Re1=0.964 780 was taken from the fit. This figure
illustrates that the difference �Re�L , p�−Re1� at p=1 vanishes
much more rapidly than that for p�1. It also rather clearly
demonstrates that the finite-size correction exponent is inde-
pendent of the bond-occupation probability p when p�1,
and that its value is in agreement with the expected value
yp�=−0.4386.

We observed that the Re data in range 10�L�512 can be
well described by

Re�p,L� = Re1 + a1�p − pc1�Lyp� + a2�p − pc1�2L2yp� + bL−2

+ cL−2+yp�. �22�

The fit yields yp�=−0.40�3�, Re1=0.964 77�3� and pc1
=0.9996�6�, consistent with the values found from the fit of
the data at p=1, and in good agreement with the expected
value pc1=1.

Furthermore, we investigate whether the numerical data
for n=2 are consistent with the existence of a marginal fixed
point at p=1. Integrating the renormalization flow, Eq. �21�,
for n=2, and setting the finite size L equal to the rescaling
factor el, one finds the renormalized value �p� as

�p� =
�p

1 − r1�p ln L
. �23�

The corresponding finite-size-scaling equation for the span-
ning probability is Re��p ,L ,u�=Re��p� ,1 ,Lyiu�, where u is
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FIG. 6. �Color online� Percolation threshold pc�n� and the con-
jectured renormalization flow. The numerical estimates of pc�n� are
shown as diamonds, and the � symbols stand for the fixed points.
The renormalization flow is represented by the arrows, and for n
=2 we use the thin arrows for the marginally relevant field. The
curve is given by Eq. �25� with a0=0.486, a1=1.5.
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comparison, we show a straight line with a slope yp�=−0.4386, de-
scribing the finite-size dependence due to a correction to scaling
associated with the irrelevant field along the p direction.
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an irrelevant field and yi its renormalization exponent. Sub-
stitution of �p�, and expansion of the scaling function in
small arguments, yields

Re��p,L,u� = Rec + R1�p� + R2��p��2 + ¯ + b1Lyi

�24�

The numerical data for Re were fitted by this formula, and
several variations of it, concerning the number of irrelevant
fields, and the degree in �p�. The data for small �p reveal
the existence of only one irrelevant field, with an exponent yi
close to −2. With this exponent fixed at yi=−2, we obtain fits
with satisfactory residuals for the data with Re0.74. The
fits deteriorate for cutoffs at smaller values, apparently be-
cause the expansion parameter �p� in Eq. �24� becomes too
large. We find that Rec=Re1=0.8168�5� at the marginal fixed
point for n=2, and that it lies at �pc�1− pc=
−0.001�0.002, in agreement with the expected location pc
=1. These data are included in Table I.

D. Numerical representation of the percolation threshold

For a description of the numerical estimates of the perco-
lation thresholds as a function of n, we impose three condi-
tions:

�1� �n� ��p�2 for �n→0;
�2� �p=1 /	3 for �n=1;
�3� �p=1−2 sin�� /18� for n→0.
These conditions are based on the exact values given in

Sec. II, which are supported and, for condition �1�, supple-
mented by our numerical evidence. The second condition is a
solution of f1��p��1−2��p�2−3��p�4=0, and the third one
of f0��p��1−3��p�2+ ��p�3=0.

We fitted the pc�n� data in Table I by the formula

�n =
f��p�

f1��p� + f��p�
, �25�

with f��p����p�2�2��p�3�4−�p�+ f0��p�A��p��, where
the amplitude A is a polynomial of �p-namely, A��p�=a0
+a1�p+a2��p�2+¯. This equation exactly reproduces f1
=0 for �n=1 and f0=0 for �n=2. From our numerical data
pc�n�, we calculated the amplitude A��p�, shown in Fig. 9.
The fit for the A data yields a0=0.488, a1=1.493, and a2
=0.000. Although a0 and a1 lie quite close to the simple
fractions 1/2 and 3/2, it is very unlikely that they are equal to
these values, according to the 
2 criterion.

We conclude this section with a comment on the condition
�1�. For �n	0, Eq. �21� yields two fixed points, namely,
��p�0=0 and −	�nr0 /r1. Expansion of Eq. �21� near these
two fixed points gives the bond-dilution exponents yp�
=r0

	�n near ��p�0=0 and yp=−r0
	�n for ��p�0=

−r0
	�n /r1. Using the relation between g and n and Taylor

expansion of Eq. �7� near n=2, one obtains yp�=−2	�n /�
near ��p�0=0 and yp=2	�n /� near ��p�0=−r0

	�n /r1.
Therefore, one has r0=−2 /�. The amplitudes r0 and r1 relate
to a0 in Eq. �25� as a0= �r1�2 / �r0�2.

V. CONCLUSION AND DISCUSSION

According to the evidence presented in Sec. II, the dual
clusters defined in the critical O�n� loop model should have

the universal properties of KF and Potts clusters in the tric-
ritical Potts model, under the condition that the O�n� loop
model and the tricritical q-state Potts model have the same
conformal anomaly, which implies that q=n2. Thus we also
deduced that dilution of the dual clusters in the O�n� loop
model by means of a bond-percolation process leads to a
percolation transition with the same universal properties as
the “geometric” fixed point of diluted KF clusters in the
tricritical Potts model �9�. Moreover, these universal proper-
ties should also be the same as KF clusters in the critical
q-state Potts model, again under the condition that the con-
formal anomaly is the same. The subsequent numerical veri-
fication in Sec. III confirms these predictions in satisfactory
detail. The diagram below shows the universal relations be-
tween the various systems by means of vertical arrows, and
the effect of dilution is indicated by horizontal arrows.

O�n� dual clusters → dilute O�n� dual clusters

� �
tricritical KF clusters → dilute tricritical clusters

� �
Potts critical clusters → critical KF clusters
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